18,462 research outputs found

    Detection of K+ mesons in segmented electromagnetic calorimeters

    Get PDF
    The combination of the CrystalBall and TAPS electromagnetic calorimeters were installed in the MAMI A2 hall in 2003. Here they are able to detect the reaction products from photo-induced reactions in combination with the Glasgow photon tagger. In the last two years the MAMI facility was upgraded from 885 MeV to 1.5 GeV, the A2 photon tagger underwent a similar upgrade crossing the threshold for strangeness photoproduction. For the CrystalBall this created a new challenge, to identify K+ mesons above the large background from other charged hadrons, in a situation where the detector setup does not benefit from a magnetic field to help separate particle species. These proceedings outline a novel technique which uses the decay products of the K+ as a strangeness tag

    Effect of Endrex on Aquatic Flora

    Get PDF
    Endrex, a chlorinated hydrocarbon, has been used extensively as a piscicide by the Tropical Fish Culture Research Institute at Malacca, Malaysia to clear ponds of unwanted populations of fish; particularly Gambusia affinis (BAIR D & GIRARD), which has proved to be a serious pest, attacking and devouring broods of Tilapia, and in other ways constituting a danger to the experimental work (2). The Endrex is usually applied in aqueous suspension to the ponds after the water level has been lowered to within a few inches of the bottom. It has been estimatcd that a concentration of about 0.018 p. p. m. in the residua~ water is achieved during the treatment of the ponds. The lethal effect, however, decreases with time and after about three weeks the ponds may be restocked with fish

    Pre-Big Bang Scenario on Self-T-Dual Bouncing Branes

    Get PDF
    We consider a new class of 5-dimensional dilatonic actions which are invariant under T-duality transformations along three compact coordinates, provided that an appropriate potential is chosen. We show that the invariance remains when we add a boundary term corresponding to a moving 3-brane, and we study the effects of the T-duality symmetry on the brane cosmological equations. We find that T-duality transformations in the bulk induce scale factor duality on the brane, together with a change of sign of the pressure of the brane cosmological matter. However, in a remarkable analogy with the Pre-Big Bang scenario, the cosmological equations are unchanged. Finally, we propose a model where the dual phases are connected through a scattering of the brane induced by an effective potential. We show how this model can realise a smooth, non-singular transition between a pre-Big Bang superinflationary Universe and a post-Big Bang accelerating Universe.Comment: 18 pages, minor typos corrected, Sec. 2 expanded with more details on the self-T-dual background, Sec.4 and 5 revised accordingly. Version to appear on JCA

    Magnetar giant flare high-energy emission

    Get PDF
    High energy (>250> 250 keV) emission has been detected persisting for several tens of seconds after the initial spike of magnetar giant flares. It has been conjectured that this emission might arise via inverse Compton scattering in a highly extended corona generated by super-Eddington outflows high up in the magnetosphere. In this paper we undertake a detailed examination of this model. We investigate the properties of the required scatterers, and whether the mechanism is consistent with the degree of pulsed emission observed in the tail of the giant flare. We conclude that the mechanism is consistent with current data, although the origin of the scattering population remains an open question. We propose an alternative picture in which the emission is closer to that star and is dominated by synchrotron radiation. The RHESSIRHESSI observations of the December 2004 flare modestly favor this latter picture. We assess the prospects for the Fermi Gamma-Ray Space Telescope to detect and characterize a similar high energy component in a future giant flare. Such a detection should help to resolve some of the outstanding issues.Comment: 20 pages, 14 figure

    A novel approach to study realistic navigations on networks

    Get PDF
    We consider navigation or search schemes on networks which are realistic in the sense that not all search chains can be completed. We show that the quantity μ=ρ/sd\mu = \rho/s_d, where sds_d is the average dynamic shortest distance and ρ\rho the success rate of completion of a search, is a consistent measure for the quality of a search strategy. Taking the example of realistic searches on scale-free networks, we find that μ\mu scales with the system size NN as NδN^{-\delta}, where δ\delta decreases as the searching strategy is improved. This measure is also shown to be sensitive to the distintinguishing characteristics of networks. In this new approach, a dynamic small world (DSW) effect is said to exist when δ0\delta \approx 0. We show that such a DSW indeed exists in social networks in which the linking probability is dependent on social distances.Comment: Text revised, references added; accepted version in Journal of Statistical Mechanic

    From brain to earth and climate systems: Small-world interaction networks or not?

    Full text link
    We consider recent reports on small-world topologies of interaction networks derived from the dynamics of spatially extended systems that are investigated in diverse scientific fields such as neurosciences, geophysics, or meteorology. With numerical simulations that mimic typical experimental situations we have identified an important constraint when characterizing such networks: indications of a small-world topology can be expected solely due to the spatial sampling of the system along with commonly used time series analysis based approaches to network characterization

    Mean-field solution of the small-world network model

    Full text link
    The small-world network model is a simple model of the structure of social networks, which simultaneously possesses characteristics of both regular lattices and random graphs. The model consists of a one-dimensional lattice with a low density of shortcuts added between randomly selected pairs of points. These shortcuts greatly reduce the typical path length between any two points on the lattice. We present a mean-field solution for the average path length and for the distribution of path lengths in the model. This solution is exact in the limit of large system size and either large or small number of shortcuts.Comment: 14 pages, 2 postscript figure

    Neutron star glitches have a substantial minimum size

    Get PDF
    Glitches are sudden spin-up events that punctuate the steady spin down of pulsars and are thought to be due to the presence of a superfluid component within neutron stars. The precise glitch mechanism and its trigger, however, remain unknown. The size of glitches is a key diagnostic for models of the underlying physics. While the largest glitches have long been taken into account by theoretical models, it has always been assumed that the minimum size lay below the detectability limit of the measurements. In this paper we define general glitch detectability limits and use them on 29 years of daily observations of the Crab pulsar, carried out at Jodrell Bank Observatory. We find that all glitches lie well above the detectability limits and by using an automated method to search for small events we are able to uncover the full glitch size distribution, with no biases. Contrary to the prediction of most models, the distribution presents a rapid decrease of the number of glitches below ~0.05 μ\muHz. This substantial minimum size indicates that a glitch must involve the motion of at least several billion superfluid vortices and provides an extra observable which can greatly help the identification of the trigger mechanism. Our study also shows that glitches are clearly separated from all the other rotation irregularities. This supports the idea that the origin of glitches is different to that of timing noise, which comprises the unmodelled random fluctuations in the rotation rates of pulsars.Comment: 8 pages; 4 figures. Accepted for publication in MNRA
    corecore